Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
mBio ; 14(1): e0339322, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223575

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies/metabolism , Antibody-Dependent Cell Cytotoxicity , COVID-19/metabolism , Killer Cells, Natural , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
3.
Open forum infectious diseases ; 8(Suppl 1):387-388, 2021.
Article in English | EuropePMC | ID: covidwho-1564905

ABSTRACT

Background DNA vaccines are safe, tolerable, elicit humoral and cellular responses, allow for repeated dosing over time, are thermostable at room temperature, and are easy to manufacture. We present a compilation of Phase 1 and Phase 2 data of Inovio’s US COVID-19 DNA Vaccine (INO-4800) targeting the full-length Spike antigen of SARS-CoV-2. A South Korean Phase 2 study is ongoing. Methods Participants in the open-label Phase 1 trial received 0.5 mg, 1.0 mg or 2.0 mg intradermally (ID) followed by electroporation (EP) at Days 0 and 28. An optional booster dose was administered >6 months post-dose 2. The Phase 2 further compared the 1.0 mg and 2.0 mg doses against placebo in a total of 401 participants randomized at a 3:3:1:1 ratio. ClinicalTrials.gov identifiers: NCT04336410 and NCT04642638 Results The majority of adverse events (AEs) related to INO-4800 across both trials were mild in severity and did not increase in frequency with age and subsequent doses. In Phase 1, 78% (14/18) and 84% (16/19) of subjects generated neutralizing antibody responses with geometric mean titers (GMTs) of 17.4 (95%CI 8.3, 36.5) and 62.3 (95% CI 36.4, 106.7) in the 1.0 and 2.0 groups, respectively (Figure 1). By week 8, 74% (14/19) and 100% (19/19) subjects generated T cell responses by Th1- associated IFNγ ELISPOT assay . Following a booster dose, neutralizing GMTs rose to 82.2 (95% CI 38.2, 176.9) and 124.7 (95% CI 62.8, 247.7) in the 1.0 mg and 2.0 mg groups, respectively, demonstrating the ability of INO-4800 to boost (Figure 2). In Phase 2, neutralizing antibody responses demonstrated GMTs of 93.6 (95%CI 77.3, 113.4) in the 1.0 mg dose group and 150.6 (95%CI 123.8, 183.1) in the 2.0 mg dose group (Figure 3). Conclusion INO-4800 appears safe and tolerable as a primary series and as a booster with the induction of both humoral and cellular immune responses. In addition to eliciting neutralizing antibodies, INO-4800 also induced T cell immune responses as demonstrated by IFNγ ELISpot. Finally, as a homologous booster, INO-4800, when administered 6-10.5 months following the primary series, resulted in an increased immune response without increase in reactogenicity. The 2.0 mg dose was selected for Phase 3 evaluation. Disclosures Joseph Agnes, PhD, Inovio (Employee, Shareholder) Mary Giffear, BS, Inovio Pharmaceuticals, Inc. (Employee) Kimberly A. Kraynyak, PhD, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, Stock options) Dinah Amante, BS, Inovio (Employee) Emma Reuschel, PhD, Inovio Pharmaceuticals (Employee) Aaron Christensen-Quick, PhD, Inovio Pharmaceuticals, Inc (Employee) Viviane M. Andrade, PhD, Inovio Pharmaceuticals Inc. (Employee) Gabriella Garufi, PhD, Inovio Pharmaceuticals, Inc. (Employee) Albert Sylvester, MS, Inovio (Employee, Shareholder) Matthew P. Morrow, PhD, Inovio Pharmaceuticals (Employee) Patrick P. Pezzoli, BS, Inovio Pharmaceuticals, Inc. (Employee) Jan Pawlicki, PhD, Inovio Pharmaceuticals (Employee) Elisabeth Gillespie, PhD, Inovio Pharmaceuticals, Inc. (Employee) Katherine Schultheis, MSc, Inovio Pharmaceuticals (Employee) Hedieh Badie, PhD, INOVIO Pharmaceuticals (Employee) Timothy A. Herring, MPH, Inovio Pharmaceuticals, Inc. (Employee, Other Financial or Material Support, Own stock in the company) Keiko O. Simon, PhD, Inovio Pharmaceuticals (Employee) Trevor R. F. Smith, PhD, Inovio (Employee, Shareholder) Stephanie Ramos, PhD, Inovio Pharmaceuticals (Employee) Jessica Lee, MPH, Inovio Pharmaceuticals (Employee) Michael Dallas, PhD, Inovio Pharmaceuticals, Inc. (Employee, Shareholder) Ami Shah Brown, PhD, Abbot Laboratories (Shareholder)IBB Biotech ETF (Shareholder)Inovio Pharmaceuticals (Employee)J & J (Shareholder)Moderna (Shareholder) Jacqueline E. Shea, PhD, Inovio Pharmaceuticals (Employee, Shareholder) J Joseph Kim, PhD, Inovio (Employee) David Weiner, PhD, Inovio (Board Member, Grant/Research Support, Shareholder, I serve on the SAB in addition to the above activities) Kate Broderick, PhD, Inovio (Employee) Trevor Mc ullan, MSc, Inovio (Shareholder) Jean Boyer, PhD, Inovio (Employee) Laurent Humeau, PhD, Inovio Pharmaceuticals (Employee) Mammen P. Mammen Jr., MD, Inovio Pharmaceuticals (Employee)

4.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1358338

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

5.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195825

ABSTRACT

Beyond neutralization, antibodies binding to their Fc receptors elicit several innate immune functions including antibody-dependent complement deposition (ADCD), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). These functions are beneficial, as they contribute to pathogen clearance; however, they also can induce inflammation. We tested the possibility that qualitative differences in SARS-CoV-2-specific antibody-mediated innate immune functions contribute to coronavirus disease 2019 (COVID-19) severity. We found that anti-S1 and anti-RBD antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from nonhospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation, whereas higher ADCP was associated with lower systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 specific antibodies as potential contributors to COVID-19 severity. Understanding these qualitative features of natural and vaccine-induced antibodies will be important in achieving optimal efficacy and safety of SARS-CoV-2 vaccines and/or COVID-19 therapeutics.IMPORTANCE A state of hyperinflammation and increased complement activation has been associated with coronavirus disease 2019 (COVID-19) severity. However, the pathophysiological mechanisms that contribute to this phenomenon remain mostly unknown. Our data point to a qualitative, rather than quantitative, difference in SARS-CoV-2-specific antibodies' ability to elicit Fc-mediated innate immune functions as a potential contributor to COVID-19 severity and associated inflammation. These data highlight the need for further studies to understand these qualitative features and their potential contribution to COVID-19 severity. This understanding could be essential to develop antibody-based COVID-19 therapeutics and SARS-CoV-2 vaccines with an optimal balance between efficacy and safety.


Subject(s)
Antibodies, Viral , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Biomarkers/blood , COVID-19/etiology , COVID-19/virology , Case-Control Studies , Cohort Studies , Complement Activation , Female , Humans , Immunoglobulin Fc Fragments/immunology , Inflammation/blood , Inflammation/etiology , Inflammation/immunology , Male , Middle Aged , Pandemics , Phagocytosis , Receptors, Fc/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL